Audio Imputation Using the Non-negative Hidden Markov Model

نویسندگان

  • Jinyu Han
  • Gautham J. Mysore
  • Bryan Pardo
چکیده

Missing data in corrupted audio recordings poses a challenging problem for audio signal processing. In this paper we present an approach that allows us to estimate missing values in the time-frequency domain of audio signals. The proposed approach, based on the Nonnegative Hidden Markov Model, enables more temporally coherent estimation for the missing data by taking into account both the spectral and temporal information of the audio signal. This approach is able to reconstruct highly corrupted audio signals with large parts of the spectrogram missing. We demonstrate this approach on real-world polyphonic music signals. The initial experimental results show that our approach has advantages over a previous missing data imputation method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-negative Hidden Markov Modeling of Audio with Application to Source Separation

In recent years, there has been a great deal of work in modeling audio using non-negative matrix factorization and its probabilistic counterparts as they yield rich models that are very useful for source separation and automatic music transcription. Given a sound source, these algorithms learn a dictionary of spectral vectors to best explain it. This dictionary is however learned in a manner th...

متن کامل

Variational Inference in Non-negative Factorial Hidden Markov Models for Efficient Audio Source Separation

The past decade has seen substantial work on the use of non-negative matrix factorization and its probabilistic counterparts for audio source separation. Although able to capture audio spectral structure well, these models neglect the non-stationarity and temporal dynamics that are important properties of audio. The recently proposed non-negative factorial hidden Markov model (N-FHMM) introduce...

متن کامل

Speech enhancement based on hidden Markov model using sparse code shrinkage

This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...

متن کامل

A new approach to wind turbine power generation forecasting, using weather radar data based on Hidden Markov Model

The wind is one of the most important and affecting phenomena and is known as one of the significant clean resources of energy. Apart from other atmospheric parameters, the wind has complex behavior and intermittent characteristics. Local phenomena can be accompanied by the wind, which is strong, non-predicted, and damaging.  Weather radars are capable of detecting and displaying storm-related ...

متن کامل

Introducing Busy Customer Portfolio Using Hidden Markov Model

Due to the effective role of Markov models in customer relationship management (CRM), there is a lack of comprehensive literature review which contains all related literatures. In this paper the focus is on academic databases to find all the articles that had been published in 2011 and earlier. One hundred articles were identified and reviewed to find direct relevance for applying Markov models...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012